\(\int \frac {a+b x}{x^4} \, dx\) [50]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 9, antiderivative size = 17 \[ \int \frac {a+b x}{x^4} \, dx=-\frac {a}{3 x^3}-\frac {b}{2 x^2} \]

[Out]

-1/3*a/x^3-1/2*b/x^2

Rubi [A] (verified)

Time = 0.00 (sec) , antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {45} \[ \int \frac {a+b x}{x^4} \, dx=-\frac {a}{3 x^3}-\frac {b}{2 x^2} \]

[In]

Int[(a + b*x)/x^4,x]

[Out]

-1/3*a/x^3 - b/(2*x^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a}{x^4}+\frac {b}{x^3}\right ) \, dx \\ & = -\frac {a}{3 x^3}-\frac {b}{2 x^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.00 (sec) , antiderivative size = 17, normalized size of antiderivative = 1.00 \[ \int \frac {a+b x}{x^4} \, dx=-\frac {a}{3 x^3}-\frac {b}{2 x^2} \]

[In]

Integrate[(a + b*x)/x^4,x]

[Out]

-1/3*a/x^3 - b/(2*x^2)

Maple [A] (verified)

Time = 0.01 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.76

method result size
norman \(\frac {-\frac {b x}{2}-\frac {a}{3}}{x^{3}}\) \(13\)
risch \(\frac {-\frac {b x}{2}-\frac {a}{3}}{x^{3}}\) \(13\)
gosper \(-\frac {3 b x +2 a}{6 x^{3}}\) \(14\)
default \(-\frac {a}{3 x^{3}}-\frac {b}{2 x^{2}}\) \(14\)
parallelrisch \(\frac {-3 b x -2 a}{6 x^{3}}\) \(14\)

[In]

int((b*x+a)/x^4,x,method=_RETURNVERBOSE)

[Out]

1/x^3*(-1/2*b*x-1/3*a)

Fricas [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.76 \[ \int \frac {a+b x}{x^4} \, dx=-\frac {3 \, b x + 2 \, a}{6 \, x^{3}} \]

[In]

integrate((b*x+a)/x^4,x, algorithm="fricas")

[Out]

-1/6*(3*b*x + 2*a)/x^3

Sympy [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.82 \[ \int \frac {a+b x}{x^4} \, dx=\frac {- 2 a - 3 b x}{6 x^{3}} \]

[In]

integrate((b*x+a)/x**4,x)

[Out]

(-2*a - 3*b*x)/(6*x**3)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.76 \[ \int \frac {a+b x}{x^4} \, dx=-\frac {3 \, b x + 2 \, a}{6 \, x^{3}} \]

[In]

integrate((b*x+a)/x^4,x, algorithm="maxima")

[Out]

-1/6*(3*b*x + 2*a)/x^3

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.76 \[ \int \frac {a+b x}{x^4} \, dx=-\frac {3 \, b x + 2 \, a}{6 \, x^{3}} \]

[In]

integrate((b*x+a)/x^4,x, algorithm="giac")

[Out]

-1/6*(3*b*x + 2*a)/x^3

Mupad [B] (verification not implemented)

Time = 0.02 (sec) , antiderivative size = 13, normalized size of antiderivative = 0.76 \[ \int \frac {a+b x}{x^4} \, dx=-\frac {2\,a+3\,b\,x}{6\,x^3} \]

[In]

int((a + b*x)/x^4,x)

[Out]

-(2*a + 3*b*x)/(6*x^3)